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THE AERODYNAMIC FORCES ON AN AEROFOIL IN NON-
UNIFORM UNSTEADY MOTION IN A CLOSED TUNNEL

By S. ROSENBLAT*
University of Sydney, Australia

(Communicated by G. Temple, F.R.S.—Received 19 October 1956—Revised 11 March 1957)
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The two-dimensional unsteady motion of an aerofoil, situated midway between parallel walls,
and moving through an inviscid, incompressible fluid, is investigated. A completely general
‘upwash distribution is taken, and expressions are obtained for the pressure on the aerofoil surface
and the lift and moment about the mid-chord point. By a conformal transformation involving
Jacobian elliptic functions the physical plane is mapped into a rectangle, and the theory is based
on a solution of Laplace’s equation satisfying certain given boundary conditions on this rectangle.

Special cases are considered in which the upwash is (¢) a sudden upgust, and (b) a harmonic
oscillation. Detailed examination is made of a rigid-body aerofoil performing translational and
rotational harmonic oscillations. The aerodynamic forces are expressed in terms of dimensionless
‘air-load coefficients’, which are then compared with corresponding coefficients for an aerofoil in

/ |\
A B

— an infinitely deep stream. The air-load coefficients are obtained in a form which readily enables
< S first-order corrections for wall interference to be evaluated. It is shown that the formulae derived
S - _are at variance with corresponding results obtained by other authors using different methods.
= .
e 1. INTRODUCTION
O The unsteady motion of an aerofoil through an inviscid, incompressible fluid is affected by
v the presence of wind-tunnel walls. The constraint due to the walls causes the aerodynamic

forces to assume values different from their free-stream values. The purpose of this paper is
to obtain expressions for these differences, that is, to find the corrections which must be
made to wind-tunnel measurements of the lift and moment on the aerofoil to reduce them
to their corresponding free-stream values.
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248 S. ROSENBLAT ON THE

Solutions for a special case of this problem, namely, harmonic unsteady perturbations
of the aerofoil, have been given by Timman (1951) and Lilley (1952). Timman’s method
was based on the Green function for the field of a source or vortex in the presence of the
aerofoil and walls, while Lilley used the well-known vortex-sheet method, which replaces
the aerofoil and its wake by a suitable distribution of doublets and vortices. The two solu-
tions are, apart from a number of minor printing errors in the former paper, identical.
However, both authors have carried out operations on certain formal Fourier expansions,
and the validity of some of these operations is doubtful. As is shown in § 14, the solutions
of the present paper for the special case in question do not agree with those of Timman and
Lilley.

The general theory below is based on a method developed by Woods (1955 4) involving
an analytic solution of Laplace’s equation satisfying certain given boundary conditions.
The flow is two-dimensional, and the aerofoil is situated midway between parallel walls.
Itis assumed that the aerofoil is sufficiently thin for the thickness effects to be of second order,
and hence negligible. The problem of the unsteady motion of a #hick aerofoil in a free stream
has been solved by Woods (1954), but the mathematical difficulties encountered are for-
midable, and would be considerably magnified in the present problem. Itis assumed that
the aerofoil in its unsteady motion generates an infinitely thin vortex sheet or ‘wake’
from the trailing edge. Itis further assumed that the unsteady motion is of small amplitude,
so that to sufficient accuracy the boundary conditions may be applied at the ‘mean’
position of the unsteady motion, taken here to be the position where the aerofoil and vortex
sheet lie parallel to the tunnel walls.

The boundary conditions to be applied are: the flow direction is constant on the walls,

“is a known function of time on the aerofoil surface, and is the same on either side of the wake,
since the latter has zero thickness.

The analysis below follows the pattern of Woods (19554) in solving the problem of an
unsteady aerofoil in a free jet. An arbitrary upwash is imposed on the aerofoil and is specified
as a function of time and position along the aerofoil surface. General expressions are
obtained for the consequent lift and moment about the mid-chord point. The flow direction
on the aerofoil surface, which occurs in the formulae for the lift and moment, is shown, to
sufficient accuracy, to be directly proportional to the upwash, except in the neighbourhood
of the front stagnation point, whose movement has to be taken into account.

The problem is examined in detail for two types of upwash distribution. The first is that
of a sudden upgust; that is, the aerofoil in its steady motion suddenly encounters an upgust
of fluid perpendicular to the direction of motion, or, equivalently, the aerofoil suddenly
acquires a finite increment to its incidence. The Laplace transform technique enables
a formal solution to be obtained in this case.

The second type of upwash considered is one which gives rise to oscillations varying
harmonically with time. In particular, an examination is made of the case of a rigid body
aerofoil performing translational and rotational oscillations. Timman (1951) and Lilley
(1952) limited their considerations to this type of motion.

The lift and moment are expressed in terms of dimensionless numbers, commonly known
as the air-load coefficients (see §10). The difference between these coefficients and their
corresponding free-stream values will clearly depend on the width of the tunnel. The
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AERODYNAMIC FORCES ON AN AEROFOIL 249

appropriate parameter is found to be the ratio of aerofoil length to tunnel width. From the
exact, general theory, approximate formulae are derived for these air-load coefficients,
which are correct to first order in the parameter chosen. The relevant equations and
discussion appear in §13. »

2. BASIC MATHEMATICAL THEORY

Let (g,0) be the velocity vector in polar co-ordinates of a flow past a thin aerofoil mid-
way between tunnel walls, as shown in figure 1. Let U be a standard reference velocity,
which may be taken without loss of generality to be the stream velocity at infinity upstream.

Y

C
L A__|H B oz
} 2a| 2a

D

Ficure 1. The z plane.

The aerofoil is assumed to be thin enough, and its unsteady perturbations about its mean
position to be small enough, to allow us to impose the boundary conditions prevailing on
the aerofoil surface over the strip —2a<<x¥<2q, y = 0 without significant error. Here we
have taken the origin of the z(= x+iy) plane to be at the mid-chord point of the aerofoil,
and the chord length to be 4a. The total width of the tunnel is 2, so that the tunnel walls are
the lines y = 4 A. The unsteady motion of the aerofoil will result in a vortex sheet or wake,
which we can assume lies on y = 0, 2a<x<co. The validity of this assumption is discussed
by Greidanus & van Heemert (1948) for the case of an unsteady aerofoil in an infinite
stream, and the argument applies similarly in this problem.

The z plane is mapped into a rectangle in the ¢(= y+ip) plane, shown in figure 2, by a
transformation involving Jacobian elliptic functions. The transformation is (see Timman
1951; Woods 1955 a, b) v

cn (4, k) :—Zsmhg—;, (1)

where the moduli £ and £’ of the elliptic functions are given by
k = tanh (ma/h),
: , E_ . (2)
or, since k2+£'2 =1, 7= sinh (ma/h).
The real and imaginary quarter periods of the elliptic functions will be denoted, as usual,
by K and K’ respectively. The theta functions associated with these elliptic functions have
parameter 7, which is related to the elliptic periods by
7= 1iK'|K (3)

(see Whittaker & Watson 1946, p. 479).

31-2
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250 S. ROSENBLAT ON THE

In the ¢ plane, the aerofoil ‘surface’ y =0, —2a<x<2a maps into the line 7 = 0,
—2K <y< 2K, the upper and lower surfaces of the vortex sheet map into y = 2K, 0<{y <K’
and y = —2K, 0<y<<K’ respectively, while the walls become 7 = 0, —2K<y<2K. The
point upstream at infinity, namely F, becomes ¢ = iK', while the point downstream at
infinity, E, becomes ¢ = 4 2K +-iK’.

Now let w = ¢ +iy be the complex stream function of the flow; then

dw/dz = ge19.
If we define a function f by
_ dz\  (O\ ., .
f=In (an) —In (3) i — 046, (4)
where Q=In(U/q), (5)
v
E D F C E
tunnel |walls
X
Q
4
K ; g
aerofoil |surface v

B G A H j

4K -
Ficure 2. The ¢ plane.

then fis an analytic function of z throughout the region —oo <x<c0, —h<y<h, except at
any stagnation points or sharp corners on the aerofoil surface. Also, because of the con-
formal nature of the transformation (1), fis an analytic function of ¢ within and on the
rectangle —2K<y<2K, 0<y<K’, except at corresponding singular points on the line
—2K<y<2K, g =0.

The boundary conditions imposed on the function f are now considered. As mentioned
earlier it is assumed here that

(i) the aerofoil is sufficiently thin to be regarded as a flat plate;

(ii) the deviations of the aerofoil from its mean position are of sufficiently small amplitude
to allow the application of the boundary conditions at these mean positions without signi-
ficant error.

The boundary conditions are:

(a) the flow direction @ is constant on the walls, and by a suitable selection of axes this
constant is taken to be zero, thatis, § = 0 ony = K’, —2K<y<2K;

(b) the flow direction is a known function of time on the aerofoil surface 5 = 0,
—2K<y<2K;

(¢) the jump in the value of the velocity logarithm £ across the wake, that s,

X=0yx—2 s, (6)
can be calculated directly (see § 5). Since the wake has zero thickness, f,; = f_,, so that

X =f2K*f—2K°
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AERODYNAMIC FORCES ON AN AEROFOIL 251

With these boundary conditions, the problem reduces to that of finding a function f
satisfying Laplace’s equation within and on a rectangle, given the imaginary part of the
function on one pair of opposite sides, and the jump in the value of the function across the
other pair of opposite sides. A solution of this boundary value problem has been obtained
by Woods (1955 a). Itis

10 = @tz 0*191{“(( ~0) |7, | dy*

ol X[ -orn) e oo o

where 2, is the ‘mean’ value of 2 on the walls,

2, Q(y+iK’) dy,

1 (2K
m= R.f —2K
0* is the value of § on the aerofoil surface, and X is the jump in 2 across the wake, as defined
in equation (6).

The theta functions of equation (7) are designated as in Whittaker & Watson (1946,
p. 463) and ¢’ denotes the derivative of a theta function. The parameter 7, of these functions
is related to the periods of the elliptic functions previously defined by

7, = iK'j2K.

The form of the solution (7) is inconvenient for the purposes of the present problem, since
the parameter 7, of the theta functions is different from the associated parameter 7 of the
elliptic functions defined in equations (1) to (3). In addition, the theta functions do not
here lend themselves as readily to algebraic manipulation as do Jacobian elliptic functions.
Hence we transform equation (7) to a form involving elliptic functions and Jacobian zeta
functions, having associated parameter 7= iK'/K, as in (3). This alternative form of
solution is (see appendix 1)

1 (2K 1+cn (y*—t)dn ;
() = Qb5 [ PR EZ DD 7w )| e

1 (K Ten (ig* —¢) dn (ip* —4) —1

+47rjo X[ sn (ig* —1¢)

_cn (ig*+£4) dn (ig*44) —1
sn (in* +¢)

where Z(u) is the Jacobian zeta function, as defined in Whittaker & Watson (1946, p. 517).

+Z(ig* 0 ~Z(g*+0) | dr*,  (8)

3. CONDITIONS ON THE FUNCTION f({)

There are certain equations involving 6*, the flow direction on the aerofoil surface, and
X, the jump in 2 across the wake, which may be obtained from consideration of (a) the
analytic character of f(¢), and (4) the conditions upstream and downstream at infinity.

Consider the integral of f(¢) around the closed contour X, shown in figure 2. This contour
is the perimeter of the rectangle —2K<y<2K, 0<#< K’ in the ¢ plane, with appropriate
semicircular indentations to exclude singular points on the perimeter. These singularities
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252 S. ROSENBLAT ON THE

correspond to any stagnation points or sharp corners on the aerofoil surface, and are log-
arithmic in character. Hence it may be readily shown that as the radii of these indenta-
tions tend to zero they make no contribution to the integral. Thus, since f(#) is analytic
throughout the interior of the rectangle, it follows that

fzf(t) dt = o.

With f replaced by 2+i6, this may be written as
2K K’
|, [00)+i0() dy+i [ [R(2K +in) +i6(2K +in)] dy
~2K 0
+f21( [Q(y+iK") +i0(y+iK")] dy—}—ifK, [2(—2K+ip) +i0(—2K +ig)] dy = 0.

Equating the imaginary parts of this equation gives

2K K’ 2K
|, * v [ 122K +in) —(—2K+in] dp [ o(+iK) dy = o,
—2K —
2K K’
that s, f 0*dy*+f Xdp* = 0, (9)
—2K 0

since §(y+iK’) = 0.
We now consider the boundary conditions upstream and downstream at infinity, that is,

at z = —00,00. Since f = 0 on the walls, it is clear that lim ¢ = 0. Also, by definition of the
z—>4©
reference velocity U, it follows that lim £ = 0. Finally, application of the conservation-
z—>—®

of-mass principle gives

lim Q =1lim Q.

Z—>—0 Z—>©
Thus we have lim f=0, limf=o0.

Z—>—0 Z—> 0

As z——o0 corresponds to iK', and z—c0 to t—+ 2K +iK’, these limits may be written

lim f=0, lim f=o0.
t— iK' t—> £ 2K+K’

Applying these limits in turn to equation (8), we obtain

0=0, +% | 0 snyrdy 4 fﬂ( 0*Z(y*) dy*
i 2m ) ok 2m ) —ox ’
k(2K 1 (2K
and 0= Q—g: [ O*snprdyriy. f~2K19*Z(y*) dy*.

These two equations give immediately that

2K
f f* sny*dy* = 0, (10)

—2K

, 1 [2K :
and Q4 =—= G*Z(y*) dy*. ' (11)

2m) ok
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AERODYNAMIC FORCES ON AN AEROFOIL 253

4. THE CIRCULATION

There exists a further relation, apart from (9), connecting the functions #* and X. This
is in the form of an integral equation, and may be found by considering an expression for
the circulation about the aerofoil and wake. “

The circulation is defined to be

I'= fC, q.ds,

where ds represents an element of length in the physical plane, and C’ is any closed contour
enclosing both the aerofoil and the wake. The circuit selected is illustrated in figure 3 (a),
representing the z plane, and is readily seen to correspond to the line EFE in the ¢ plane, as
shown in figure 3 (b).

C

Fw E 00

(%)
Ficure 3. (a) The z plane; (4) the ¢ plane.

The theory to follow is valid only as an approximation of first order in the perturbation
velocity g— U. However, this approximation is a consequence of the assumption that the
displacements of the aerofoil from its mean steady position are of small amplitude, and hence
does not introduce any additional errors. To first order in this perturbation velocity, £ is
directly proportional to the velocity ¢. For

Q=In (g) = —In (1+ q 1) > —(l—l) , to first order.

U U
Thus g~ U(1-20).
On the tunnel walls, we have that ds = dx. Also, differentiation of equation (1) gives
k' nZz
—sntdntdt = —mcosh%dz.

) ,
But ‘coshg%=A/(l —i—sinh%%) =J(l —!—kﬁ,—zcn2 t) =/%dn I
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254 S. ROSENBLAT ON THE
Hence sntds = (m/2hk) dz. (12)
Therefore on the walls, that is, on z = x ik, or { = y-+iK’, (12) gives
nsydy = (m/2h) dx. (13)
With the aid of these results the circulation can now be written
I'= 20U 2 [1—Q(y+iK')]nsydy
T Jok
_2RU Q(y+iK") nsydy, (14)
mJ -k
where f 2I:Kns ydy = 0, since nsy is an odd function of y.

Subsequent calculations are much simplified if f{¢) is expressed in yet another form.
Using (9) to (11) we find (see appendix 1)

1 (28 cny* dny*+cntdnt 1 (& cntdnt—cnig* dnig*
_— *® £ . &
S Qﬂf_mﬁ ;¥ —snz & +2ﬂf0 Xsnt = oy —snzg 1% (15)
The periodic properties.
N | con  1dny .o iCDYy
sn (7+1K) _%ns% cn (7’+1K) - _’ksn,},s dn (7’+1K) - sny ’

give that on the walls

dy*

o L2 _keny* dny* sn?y—cnydny
Qy+ik) _—271f_2K6 nsy ksny* sny—1

1 (¥ kcnin* dnig* sn?y+cnydny | o
w—2_7?[0 Xnsy k2snZig* sn2y —1 dr*.

Substitution of this into equation (14) now yields for the circulation

_RU (2 (2K keny* dny* sn?y—cny dny %
r=2= _2K6 f*ZKns y ksny* sny—1 dydy

. K’ 2K 1n¥ 17 % 2
_}_%lzf Xf nszykcnn] dnig* sn?y+cny dnydydn*.
0

—oK k?sn?ip* sn?y—1

In appendix 2 it is shown that

2K kcny* dny* sn?y—cny dny
= 2 S * * YA
Il_f_anS 4 ksny* sny—1 dy 4Kk[eny* dny* +sny*Z(y*)],

and
2K kcnig* dnig* sn?y+cny dny . . . .
IZEJ.ManS” ”kz snfip® sn2y —1 dy = —4Kk[cnip* dnip* +snip*Z(in*)].

Hence, using these results,

4KhkU { FK

I'=——03 f*[cny* dny* +sny*Z(y*)] dy*
2K

K/
_ f X[enin* dnir;*+sni7;*Z(if7*)]dﬂ*}. (16)
0
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AERODYNAMIC FORCES ON AN AEROFOIL 255

We now assume that the circulation about the aerofoil and wake prior to the start of the
unsteady motion was zero. Then by Kelvin’s circulation theorem, it is zero throughout the
unsteady motion. That is,

2K
f *[cny* dny* 4-sny*Z(y*)] dy* —f X[cnlr]* dnig*+snig*Z(in*)]dy* = 0. (17)
2k

This is the integral equation relating X and the flow direction 6*.

5. STRENGTH OF THE VORTEX SHEET

- The function X, the jump in £ across the wake, is to first order in the perturbation
velocity ¢— U directly proportional to the strength of the vortex sheet. For if we denote by
[4] the jump in the quantity 4 across the wake, then the strength of the vortex sheet is
defined as [q]

Since we have, to first order, that 2 = — (¢/U—1), as shown in § 4, therefore
X=[Q] =—[g/U-1];
thatis, X =—[q]/U, (18)

directly proportional to the strength of the sheet.

The function X may be determined from the condition (9), the integral equation (17) and
a differential equation obtainable from the wake condition, namely, that the pressure
is continuous across the vortex sheet.

Bernoulli’s equation may be written

a
ﬁ+%pq"’+p£—= G, (19)

where p is the pressure, p the density and C a function of time only. Suppose that s is dis-
tance measured along the vortex sheet, then on each side of the sheet it follows that

., 09, 0q_
as PG TP = O
since ¢ = d¢/ds. As the vortex sheet lies on y = 0, 2a<x <00, we put s = x, and so
@, 99, 94
ox P15 TP = 0.

Subtraction of the two equations appropriate to the opposite sides of the sheet yields
2 9
e+l = o,
since the pressure is continuous across the wake, that is, [p] = 0. Using the results
g U(1—-92), ¢~U%*(1-292)

and (18) we may write the last equation as

X X

U0x+ F

(20)

32 VoL. 250. A.
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256 S. ROSENBLAT ON THE
On the wake ¢ = 42K +1i7, and so equation (1) becomes
cnip = —{ck—sinhg%. (21)
Hence, by a method used previously, .
snigdy = %dx, (22)
which allows (20) to be written X X
U, . 90X 0
m1n51ﬂ~a—ﬂ~+~a—t—= 0. (23)

This is the differential equation satisfied by X.

The flow direction on the aerofoil surface, 6*, is not completely known a priori, since it is
composed not only of a term arising from the prescribed upwash distribution, but also of a
term associated with the motion of the front stagnation point. This latter term is not
prescribed, and must be calculated.

Suppose 0* is divided into the two components mentioned. If the upwash velocity on the
plate is v, then, except in the neighbourhood of the front stagnation point, §* = sin~! (v/q).
That is, to first order in the perturbation velocity, §* = v/U.

The position of the front stagnation point in the mean steady flow is y* = 0 in the ¢ plane.
Assume that at any instant in the unsteady motion the front stagnation point is at y* = —4,
where ¢ will be small since the amplitude of the unsteady motion is small. Then in the range
—J0<y* <0, the flow is reversed, that is, §* is increased by 7 in this range. Thus we may

write | /U (—2K<y*<2K),}

o :{77 (—0<y*<0). (24)

Substituting from (24) into equations (9), (10) and (17) we obtain, to first order of magnitude

in 4, oK
f vsnydy = 0, (25)
~2K
1 2k K’
o~ f ody+ f Xdy = 0, (26)
UJ -2k 0 ,

2K '
and 713+lef v[eny dny~+snyZ(y)] dy—fK X[cnip dnig+snipZ(ig)]dg = 0.  (27)
—92K 0

The upwash v is prescribed, and hence equations (26) and (27) enable § and X to be
determined for any general upwash distribution.

6. THE PRESSURE DISTRIBUTION

An expression is now derived for the pressure distribution on the aerofoil surface. The
lift and moment, as will be seen subsequently, are functions of the pressure.
Bernoulli’s equation at the aerofoil surface can be written

d
=30V~ ¢)—p3, [eds+ 4, (28)

where 4 is a function of time only, and ¢ = dg/ds. Writing s = x on the aerofoil surface, we
obtain from equation (12), ds = dx = (2hk/m) snydy.
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Replacing ¢ by U(1—12), as previously, we have that

?.g 89 2 2 2
U5, v-g -2t

Therefore (28) can be written

) U29+2kkpr ny 02

y 5 d, (29)

the constant being omitted since its contribution to the lift and moment would be zero.
Equation (15), in the limit as » - 0, gives on the aerofoil surface,

1 cny*dny*+4cenydny | o _l_fK cny dny—cnig* dnig* %
L) _"271_[_ b sny* —sny dy ton 0 Xsny sn?ig* —sn?y dy
(30)

It is shown in appendix 3 that substitution of £ from (30) into (29) eventually yields a
comparatively simple expression for p. The pressure is found to be

—p—szZK o¥ [cny* dny +cnydny _z( :Id "
=2 ) _ok sny* —sny Y

2K * -
hkpU 6,*J‘ [cny Sclnnyy . cnyy dny+Z(y ]dydy*, (31)

where 0* =30*dt. Equation (31) reveals the important fact that the pressure distribution,
and hence also the lift and moment, can be obtained without direct calculation of X, the
strength of the vortex sheet.

The above formula for p may yet be simplified cons1derably Let

Gly*) = %f 6% sn y*dy*. (32)

Then it is shown in appendix 3 that (31) can be written

_pU [ % 1 /v l:cny*dny +cnydny :I «
= 2”f__M(Uﬁ +G%) ] L (33)

Replacing 6* in (32) and (83) by its components from equation (24), we obtain to first
order in 4,

1+cny dny+snyZ(y) pU 2K [cny* dny +cnydny :|

— 1 2

p=—3pU% 7 +on) L, T8 sny* —sny —Z(y) |dy*,
(34)

where g(y*)z%’—lgﬁ vsny*dy*. (35)

Equation (34) gives the pressure distribution for an arbitrary upwash v. It may be
compared in form with the corresponding result for an unsteady aerofoil in a free jet

(Woods 1955 b).

32-2
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7. THE LIFT AND MOMENT

Exact analytical expressions are now obtained for the lift and moment acting on the
aerofoil. The lift, L, and the moment about the mid-chord point, M, are given by

2K
L——[" past),
ZKT (36)
M= © xpdx(y).
y==2K
With the aid of (12), the lift may be written
Lk (2K
L= _'2,”ik ? Sn7d73
—-2K

and so substituting for p from (34), we have

2
I— /zk,oU

Pf—zx [1 -|—cny dny-+snyZ(y)] dy

cny*dny*+cnydny :, *}
f—zxf (v+g)|sny sny* _sny snyZ(y) |dydy (37)

The integrals of equation (37) may be readily evaluated (see appendix 2), and we eventually
obtain for the lift

1 _ 4Khkp UZ{
m

2K
S+, rdleny* dny* sy ZomIdr|.  (39)
mUJ _ox '
An expression for the moment may be obtained similarly. From equation (12),
snydy = %cdx.

_ 2hk [ _hy (1—kcdy
Hence x———;fosnydy In (l—l—kcdy) (39)

Substitution from (39) into (36) therefore gives
2

= 2k(%)

,

and so from (34) the moment about the mid-chord point is

K 1—kcdy
psn’yln (m) d}’, (4:0)

—2K

M= -lgp(lfﬂ_U)2{3fi [.1 +cny dn?'—i—snyZ(y)] In (i 1//:23;) dy

cny*dny*+cnydny :I (lf_ILCd_V) *}
f—zxf-mc vHa)|smy sny*—sny snyZ(y) | In 1+kcdy dydy*;.
(41)

The integrals occurring here are calculated in appendix 2, yielding finally

=tV PER - L[ pramon-nar), @)
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where E is the complete elliptic integral of the second kind,
E= [ dudy
0
(see, for example, Byrd & Friedman 1954, p. 191),

I'(y*)sfm snycny dnyln <l—kcdy) dy (43)

—ox Sny¥—sny 1+kedy 7
N ad 1—kcdy 1 o,
and I= f_ZKsn yZ(y) In (W) dy = Z:T(f—-le (u) du. (44)

Equations (38) and (42) give the general analytical solutions for the lift and moment for
an arbitrary upwash distribution.

8. FORCES DUE TO A SUDDEN UPGUST

The above general expressions for the lift and moment for an arbitrary upwash are now
examined for particular types of unsteady motion. The first case is where the upwash is an
upgust impulsively imposed on a steady motion.

It was previously stated that the equations (20), (26) and (27) completely determine X
and ¢ for any general upwash distribution. We now proceed to investigate these functions
for the case of a sudden upgust.

Equation (20) indicates that X is a function of x and ¢ of the form

X=Xx-Ut. (45)
This shows that the value of X at a general point (x, ) is equal to its value at some other
point (%, %)), say, where f, = ¢t— (x—=x,)/U. In particular, the value of X at (x,?) is equal
to that at the trailing edge x = 2a at a ‘retarded time’ {— (x—2a)/U. That is,
X(x, Ut) = X(2a, Ut—x+2a).
By defining new variables £ =x/2a, 7= Ut/2a, (46)
we may write this last result as X(E,7) = X(1,7—£+1). (47)
The variable of the integrals involving X in equations (26) and (27) is now changed from
5 to £. From equations (1), (2) and (22) we find
dy :J(;Thk) ;l;c l+k2 , cnip =%sinh72r—;, dnip = k'coshg—g,
J {COShI“ﬁZﬁ}

(48)
iy = cn! [llcc— sinhg%:l , snigdy = %%:—c
Thus, substitution from (46) and (48) enables us to write
| Koo 1 [® X d¢
fo Xdy = J2K fl J/(coshrE—coshr)’
-
and f X[cniy dnip+snipZ(in)] dy L (49)
0
K f°° Xsinh r§d§ +i_r_ ©
- 2,/2k), J(coshrE—coshr) " 2k ),

where r = 2mafh.

’

XZ {cn—l (5 sinh%)} dE,

k
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Next suppose the unsteady motion to have been in progress for a finite time, and let &,
be the value of { at the end of the (finite) vortex sheet. Then from equation (47),

X(&s>7) = X(1,7—E;+1).

This shows that the unsteady motion may be regarded as having commenced at the retarded
time 7—& + 1, which may therefore conveniently be taken as the origin in the time scale.
That is, we put §, = 147, so that X(£,7) = 0 for {>1-+7. Then the substitution

v=r1—§+1
and equations (49) allow (26) and (27) to be written in the form

1 2K ro(7 X(1,v) dv _
ﬂa+f]j_2de7+J2k’ IOJ{cosh r(r—v+1)—coshr}

1 [ k" (7 X(L,v)sinhr(r—v+1)dv
and  md+ Uf_sz[cny dny+snyZ(y)] dy 2./2k ). J{coshr(1—v+1) —coshr}

_.;_%J‘;X(l,v) Z{cn‘1 (%sinh%[7——v+ l])}dv =0. (51)

(50)

Equations (50) and (51) are integral equations with ‘difference’ kernels, and hence
solutions can be obtained using the Laplace transform method. The Laplace transform

notation used is o
2{f0).p)= [ e fin) dr=F(p), (52

where p is a parameter whose real part is greater than some constant, ¢, say, which is just
large enough to ensure that the integral converges. The Faltung theorem of the Laplace
transform theory, which is needed, is

2| [ F(o) (1—0) do,p| = 2(F(), 5} 2(8(7), ). (53)

Taking the transform of (50) and (51), and using (53), we obtain

< - e d e frdr -
7(0+4) +J2k’Xf0 J{coshr(r+1)—coshr}

(54)

d n(3+5 k' —J‘ et sinhr(r+1)dr
and.m - 2./2k7 ) J{coshr(r+1) —coshr}
< K . .7
—2—kao e“x’"Z{cn‘l (7; smh§[1+ 1])} dr=0, (55)
1 (2K d
where =T —21<v 7 (56)
1 (2K
and b= — f s[eny dny+snyZ(y)] dy. (57)
nUJ —ok

Consider now the integral

smhr(r—H)
J= f e? T{J{coshr(r—f—l)-—coshr}+lz[cn ( sinhZ {1+1})]}d1,
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AERODYNAMIC FORCES ON AN AEROFOIL 261
which occurs in equation (55) This may be written
{ smh r(1+1)
J= f J{cosh r(r+1) —cosh r}+1Z[cn ( s1nh2{1+ l})]
J2k
B K dT+“/2k ® e t7dr
J{coshr(r+1)—coshr} o J{coshr(r4+1) —coshr}’

We now integrate by parts the integral

sinhr(7+1) , .
I= f {/{cosh r(r+1)—cosh r}-’_izl:cn_l (kz sinh 5 {7+ 1})]

J2k
~ J{coshr(r + 1) —cosh r}}

The addition and subtraction of a term, in the manner indicated, is necessary in order that
the integrated part should vanish and the resultant integral should be convergent. Thus we
find, on integrating by parts,

sinh7(7+1)

) f BT {J{cosh r(r+1) —coshr} —|-iZ|:cn“ (/% sinh %{T + l}) ]
J2k }

k/
~ J{coshr(r+1) —cosh7}

From the definition of Z(«), and the results

d 1

du JI(1—u?) (K24 Kk2u?)}
(see, for example, Byrd & Friedman 1954, pp. 31, 285), we obtain, after some rearrangement,

- 4 { © e7#7 (1—coshrr)dr n ( 2E 1) f°° ~trdr
—2/2pl) o [coshr(r+1) —coshr]? " \Kk2 o J{coshr(r+1) —cosh r}}
With this result, equation (55) can now be written

s T k' (1—coshrr) k' (2E J2k
m(0+2) 2/cf {2J2p[coshr(1+l)—coshr] 2J2p( Kk'? 1)+—/7—}

(ecn~ly) =— and dn?(cn~lu) = A2+ K22

y e t7dr

Jicoshr(1+1) —coshr}

The integrals of equations (54) and (58) may be evaluated in terms of Legendre functions

of the second kind. From Erdelyi (1953, p. 155) we have the definition of the associated
Legendre function of the second kind:

=0. (58)

Qt(coshr) = (3m)teri gz—?h—?gf e +Hu (coshu—cosh )+ du, (59)
2 r

(where I is the gamma function), provided
Z(V+u+1)>0, Zu<i. (60)
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262 S. ROSENBLAT ON THE

After an appropriate change of variable, it can easily be shown that both the integrals
under consideration satisfy the requirement (60). Therefore we find, after some use of
standard recurrence relations,

0 e f7dr J2e
fo J{coshr(r+1)—coshr} Qpyr—3 (coshr),
k' (1 —coshrr) S J2k 07 dr
7= [ e o 1) coniy 2 mpli k'Z“l) ) Torre1) o) (Y
4 oF , 1
e2j) { (P ) Qpir-3(cosh r)+( Riz ) Qpjr—3(cosh r)—(é) +§) Qpyr+3(cosh r)}.

If we define quantities N and 2 by

_t_1
T 2
_ ' 2FE
and 2(coshr)=Qy,,(coshr) + Q,_,(coshr) +2(1 ——W) Qy(coshr),

then equations (54) and (58) may now be written respectively,
n(8+a) +X QN(cosh r) =0, (62)
and n(3+5)+XS Pk I:QN“(cosh r) = Qy-1(coshr) + °@(cosh r)]- = 0. (63)

Recurrence relations for the Legendre functions (Whittaker & Watson 1946, p. 318)
enable us to write

» 2N+1 . ,
Qys1(coshr) —Qy_ (coshr) = W(fm sinh 7Qy(coshr),

where Qy(coshr) is the associated Legendre function; that is, using equation (2) and the
fact that r = 2ma/#,

Qur(coshr) = Qy-y(coshr) = 70-E N £ Qh(coshr).

Thus (63) may alternatively be expressed as

n(0+b) +X$ {JVQN(cosh r)+ k” (coshr)} =0, (64)

where #'=(2N+1)/2N(N+1). _
Solving equations (62) and (64) for X and §, we obtain

- mk'(b—a)e?
X = — T (65)
NN ghk

where we have put @ for @(coshr) and 2 for 2(coshr). The latter equation may be written
0= glﬁg_aa (67)
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AERODYNAMIC FORCES ON AN AEROFOIL 263
where S,p= Qf" el (68)
)
and g=a—b
1 (2K
= ;Uf_mv[l —cny dny—snyZ(y)] dy, (69)
from (56) and (57). The Laplace transform relation
dF
2[Grs 2] = P2 F), 51— F(0), (10)

where F(0) is the value of F at 7 = 0, together with equation (57), enables (67) to be written

8 =20, p}[£{¢ p}+5(0)] —a.
Thus, using the Faltung theorem,

(1) =J;31(1—a) dg(o) —a. (71)
Finally, the inversion integral of the Laplace transform theory, namely,
LT =5 [ T dp=111) (>0, (12
and the definition of §, given in equation (68) give that
b=y cjlg' (73)
QN Q= 2

Equations (67), (71) and (73) fix the value of §. Hence the expression for the lift and
moment may be written down once the functional form of the upgust is given. A formula
for X, though not required in the determination of the lift and moment, may be obtained
by a similar procedure to the above.

9. THE HARMONICALLY OSCILLATING AEROFOIL

The second case to be considered, and one which is of common practical interest, is that
of an aerofoil performing harmonic oscillations. Formulae are obtained on the assumption
that the upwash velocity is varying harmonically with time. These formulae can be obtained
as a special case of the results of §8, taking the upwash in the above equations to have
persisted for an infinitely long time. Alternatively, as is done here, they may be found
directly.

Suppose the upwash to have frequency v/27. Then a solution of equation (20) is

X = XO eiv(t—x/U),
where X is a constant, while the velocity » may be written
v(7,2) = () e™.
The variable of equations (26) and (27) is again changed from 7 to §, where we now put
X 2av _ 2ma

2a=1+£, A=ﬁ, === (74)

33 Vor. 250. A.
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264 S. ROSENBLAT ON THE
Then with the aid of (48), equations (26) and (27) become

ewt 2K ewtre iA —-1/\5 dg

U Uod?’ JQk' J{COShr §+1)~*COSh7‘}= 5 (75)
and
< ‘ Xoere Ak e e Mginhr(£+1) dE
o+ T vo[cny dny-+snyZ(y)] dy——T{ﬁ  Jeosh o {E 1T —cosh7)

4 evez ent (’% sinhZ (¢-+1}) [de] =o. (76)

It is immediately obvious that the integrals of equations (75) and (76) are identical with
those of (54) and (55), with p replaced by il. Solutions are again obtainable in terms of
Legendre functions, using the formulae of equation (61). We find for equations (75) and (76)

ewl 2K

- XO e
T ”od7’+‘—/7* Qy(coshr) = 0, (77)

and
e ivt 2K ! 2

X,e rk
Tl vo[cny dny+snyZ(y)]dy -+ 7 {g/VQN(coshr)+81/Uc (cosh r)} =0, (78)

where N=il/r—4, and, as before, /"= (2N+1)/2N(N+1).
Solving equations (77) and (78) for X, and 4, we find

k/
i vo[1—cny dny—snyZ(y)]dy
XO == —2K , 7'k’2 ] (79)
Qv Qu—gz 2
2
et ( (2K v+ Qv tgmg ;k/Uc
and {§=— ” Vo[1+cny dny+snyZ(y)]dy— 7
2nlU —2K Q ./VQ rk’? "9
N N8k
2K
X f—zxv()[l —cny dny—snyZ(y)] dy} . (80)
If for brevity we define aOE—L f B v,dy, (81)
mUJ) —ox
1 2K
bo= 5 f _,Joleny dny+snyZ(y)] dy, (82)
k’2
QN+'A/QN+8 /UC
and T, )= (83)

rk'2
QN '/VQN SI/UCQ

then equation (80) may be written,
§=—er{3ay(1+T) +3bo(1—T)} (84)

It will be shown subsequently that the functlon T(A,r) is a generalization of the well-known
T"function of Kiissner (1940) for an oscillating aerofoil in an infinite stream.
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The lift and moment on the aerofoil for a harmonic upwash may now be expressed as

2 pivt — 2
L= A L b 5T 2 [ gtdo) [eny® dny*+snp*Z())dy?),
m 2 2 aU —92K
85)
and (
h 1+7T —
= kp(12) el a8 | [BEE R ] [0 okt 0% -0y,
(86)
where here go=2—;’%k yvosny*dy*. (87)

10. MOTION OF A RIGID AEROFOIL

The solutions (85) and (86) for a harmonic upwash are most frequently applied in
practice to an aerofoil regarded as a rigid body. Two types of oscillations of interest are:
(i) translational motion of the aerofoil, that is, pitching, and (ii) simple rotation of the
aerofoil about some fixed point, here taken to be the mid-chord point. Substitution of the
appropriate form for v, in equations (81) to (87) will yield the required formulae for the
two cases respectively.

Instead of considering these two motions separately, we take them simultaneously as
a compound oscillation, and extract the components after the general results have been
obtained. Let the translational and rotational displacements be given by

Yy = yO eivt, a=al eivt’

respectively, where y°, o are constants. Then the vertical displacement corresponding to
a rotation « may be expressed as

—y = —xa = —xale”,

Therefore the upwash velocity for the compound motion is
_d N (' 0y0x) wifiy (49 — xa0) — a0
V= dt (y—y') = dt (at + axot) = e {iv(y° — xa) —a U} (88)

Since (39) gives y — hl (1 _deV)

7 \1¥kcdy)?

the velocity may therefore be expressed as

ha®, (1—kcdy 0
w[y ————1 (l—l—kcdy):l_a U. (89)
Substituting (89) into equations (81), (82) and (87), we find that
ay = ;—Ig(ivy"—a"l/'), (90)
hal 8 E K
by = ‘7';2;‘] ( )+I:| (91)

33-2
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. k. 1—kcdy) |, v2h%a® 1—kcdy :|
and gozﬂ—ﬁ(wyo_.aOU) ln(1 +/ccdy)+27r2U In (l—f—kcdy) (92)

Using these expressions for a,, b, and g, in equations (85) and (86), we obtain for the lift,
L, and moment about the mid-chord point, M,

L 4thpUe {

aK(1+ T) (v —a0U) — 2% (1 T [S(E K)_u]
—%(ivyo—ZaoU) l:—~——-—8 E/:Kz—l-l]}, (93)

and M=F (kU) %{QK(I—}—T) (iny® —a00)) [?-(El;:l{—) +1]

iv/zoc 8(E—K) vl , o,
- [PER IR -0, (o)
[ " kcdy]
where ‘ J'= —ZKI (¥) [l (1+kcd7/) dy, (95)
‘ 1—kcdy\7?
and f 1[1 (1 = dy)] dy. (96)

In practical investigations of the unsteady motion of an aerofoil, both in a free stream
and a wind tunnel, the aerodynamic forces are usually discussed in terms of certain non-
dimensional quantities, derived from the lift and moment, called ‘air-load’ coefficients.
Following Jones (1941), we introduce dimensionless numbers /4, Iy, m,4, my,, defined by

L
QmapUZe 11224“”134“ > (97)
M 0
and dna?pU? e = M2 2y +mgq 0. (98)

Then the air-load coefficients are defined to be the real and imaginary parts of these
numbers, that is, /;, /,, etc., where [, +il, = [,,, etc.
Substituting from (93) and (94) we now obtain

I ) o
=Bt ] D e
oS [1E.8. o
nrzld= Ko+ T [ MK ] M [SEZR P ),

(102)
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AERODYNAMIC FORCES ON AN AEROFOIL 267
Thus the air-load coefficients are found to be
|, = 4KIZC.V{2KUJ(T) 8(E— K>+1]}
=S (),
=2 axun va )+ s (1) [2E D 1 1)),
l, — 2K}?;{2KUJ(T)———[3+,%(T [ELEIC_—_I()H]}
=-S5 [HEE ), |
e rnram[ 2 ),
g = 4}i’§U{2KU[1+gz(T [8<E K) —|—[:|+ #(T) [S(E K>+I:| T =),
my = — 477’12';[][8 E-A) +I]{2KUJ(T)+§;[1—.%(T)]|:§-E~;—{(~ +1]).

(103)

These expressions give exact formulae for the air-load coefficients as functions of the real
and imaginary parts of the function 7°(4,7), as defined in equation (83).

11. EXPANSIONS IN SERIES

It remains now to evaluate the functions I'(y), I, J' and J occurring in the formulae of
equation (103). To do this it is found necessary to expand in series the integrals by which
these functions are defined, and to integrate to an appropriate number of terms. The
expansions are made as power series in the elliptic parameter £ since, as will be indicated
below, this is the parameter involved in obtaining the first-order wind-tunnel corrections.

It is shown in appendix 2 that

, 2K snycny dny l—kcdy)

*) —

I'(y )_f ok SY* —sny ln(H—kcdy (43)
815((d 2 *—%)-BKksny f sny*Z(y*) dy*. (104)

Further, some useful expansions obtained from the Fourier series for the elliptic functions
(see, for example, Byrd & Friedman, p. 303) are

sny = siny—1k2cos y(y —siny cosy) + O(k*),
cny = cosy-+1k?sin y(y —siny cosy) + O(k*), (105)
dny = 1—3k%sin?y+ O(k*),
provided | £ |<1. With the aid of these expansions, the definition
Z(y) -_:.fy dn%du—%y;
and the approximations °
E=in[1-}2—&k*+0(k%)], K = in[1+1k2+k*+ O(k%)] (106)
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268 S. ROSENBLAT ON THE
(Byrd & Friedman, pp. 297, 298), we obtain
Z(y) = $k%sin 2y + O(k*). (107)
- Hence fy sny*Z(y*) dy* = %/ﬂfy siny* sin 2y*dy* 4 O (k%)
0 0

= $k2sind y* 4 O(k*) = tk?sndy* 4 O(k*),
the last step of which follows from (105). Substitution of this into (104) now gives
I'(y%) _‘8K(d 2 *—%—%{fﬁsnwmow. (108)
With this result equation (44) gives immediately that
I=—{nk3+O(k°). (109)

Evaluation ot the quantities J' and J requires the expansion of the function
1—kcdy\7?
[ (rear)]

1—kcd
[1 (1+k dV)] — 4k?[cd2y+3k2cdy+ O(KY)],

in powers of £. We find that

so, by (95),

J' — 32Kk f cd? (dnzy.—% dy +- 18Kk f {4cd4 (dn%—%)—kzsn4ycd2y}dy+0(k7)

—2K
=28 (B2 k2K?) + 34n KRS+ O(RY). - (110)
Similarly, from (96), J=—mk L OK). (111)

The expansions (108) to (111) give approximate values of functions required in the deter-
mination of the lift, moment and air-load coefficients.

12. LIMITING CASE OF AN INFINITE STREAM

In the limiting case of an infinite stream, that is, as the wall separation 4 becomes infinite,
all the above results should reduce to the well-known free-stream formulae. From equations
(1) and (2) we have that as z—>o0,

k-0, k-1, K->3}m, K —o0. (112)
From (105), the elliptic functions are seen to degenerate to ordinary trigonometrical func-
tions, namely, snu—>sinu, cnu->cosu, dnu->1, (113)
while from (106) and (107) we find that
E—in, Z(u)—0. (114)
With the aid of these, the circulation given by equation (16) becomes

I“:—~2aU|:f” ﬁ*cosy*dy*-wacoshﬂ*dﬂ*:l, (115)
- 0
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which is an alternative form of a well-known result. The equations (9), (10) and (17)
reduce to the classical free-stream boundary conditions

f" a*dy*+f°°Xd7;* —o, (116)
-7 0

" f*siny*dy* = o, (117)
and K 0* cosy*dy*—wacoshﬂ*dﬂ* = 0. (118)

Formulae (115) to (118) are to be found in Woods (1954).
Similarly, equations (38) and (41) for the lift and moment degenerate, with the aid of
(108) and (109), to (see, for example, Greidanus & van Heemert 1948)

L—-27rapU2{b‘—[— f (v+g) cosy*dy* } (119)

where now g= %fy vsiny*dy*, (120)
0

and M = 27ra2pU2{6‘—i— ;%Jm (v+8) cos 2y*dy*}. (121)

The reduction of the formulae in the special cases of §§ 8 to 10 requires the limiting values
of the Legendre functions. These may be obtained from the formula (Watson 1952, p. 156)

lim [”—_M Q,’{‘(cosh 2)] — K, (2),

—wlLsin (n+m)
where K,,(z) is a modified Bessel function of the second kind. From equation (74),
r=2mnalh—>0 as h—>oo,
and so N=illr—}—>00 as h—>o0.

Also # = (2N+1)/2N(N+1) = O(1/N). Thus putting z=il—4r, n = N =il/r—1, and
m = 0,1, in the above formula, we find that

lim Qy(coshr) = K,(id),

r=0
lim A" Qy(coshr) = —K,(id), | (122)
r=0

lim 2(coshr) = 0.
r=0
Using these limiting values, the function 7(A,7) defined in the case of harmonic oscillations
reduces to . .
K (i) =Ky (id)
T 0 =To= g (2) T Ky(iA)’

or, in terms of Hankel functions,
_ HP() —iHP(A)
= HPW) AN

This is the well-known Kiissner free-stream function 7°(1).

(123)
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The limiting values of the air-load coefficients can now be obtained. In place of the
frequency v, we use the non-dimensional ‘reduced frequency’ of the oscillation, A, defined
in equation (74). Since the aerofoil has zero thickness, we may take 4a = ¢, where ¢ is the
length of the aerofoil chord. Thus, from (74),

A=
Using equations (106), (109) to (111) and (123), we find for the limiting values of the non-
dimensional numbers of equations (99) to (106),
hy = —1A(14-15) + 2%,

lyy = (1415) — 31A(1 — 7o) +2i4,

myy = —HA(1+Tp),

myy = §(1+7To) —HA(1 = T5) +54%
These agree with the values quoted by Greidanus & van Heemert (1948).

(124)

(125)

13. FIRST-ORDER TUNNEL CORRECTIONS

The air-load coeflicients defined above differ from their corresponding free-stream values
by amounts which depend on the wall separation 4. Equation (2) shows that the elliptic
parameter £ is inversely proportional to %; further, it is directly proportional to the ratio
of aerofoil length to tunnel width. Thus an expansion of the formulae for the air-load
coefficients as power series in 42 allows the corrections necessary for reduction to free
stream values to be readily evaluated. These series, which are based on the expansions of
§ 11, are taken to order 2 only, and hence the corrections are first-order terms. The expan-
sions below are easily shown to be rapidly convergent, so that the first-order terms give a
good approximation to the corrections required.

From equation (2), na
h="E0 3 O], | (126)

and so using this, and equations (106) and (109) to (111), we may write the air-load
coefficients as

I, = I (T)+22+35k2A[2.5 (T) + 1] + O (k4),
ly=—A[1+2(T)]—4k2A[1+2(T)] +O(k*),
Iy = 1+2(T) — 307 (T) +&k[2+22(T) — 327 (T)] + O(k%),
ly=I(T) +3AB+2(T)]+12k[27(T) +3A{3+2(T)} + O(k*),
my = g (1) +-g5h®A7 (T) + O (kY),
my = —3A[1-+2(T)] — kA [1+2(T)]+ O(k*),
my = $[14+R(T)] —3AS (T) +3° +4cF*[1+2(T)] + O (),
my = 35 (T) =11 —2(T)] +55k*7 (T) + O ().

, (127)

J
Equations (127) contain no expansion of the function 7°(A,r). From its definition, a
‘series for 7°(A,r) of the form

T(A,7) = Ty(A) + k2T, () + K Ty(X) + ...,
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(where r = 27na/h = 2tanh~1£) can be obtained. Some analysis shows, however, that this
expansion is too slowly convergent, even for small values of £, to allow its use in (127).
Hence it is most convenient to evaluate the function 7(A,r) directly, without resort to an
expansion of the above type. This may be done by transforming the Legendre functions of
T(A,7) into hypergeometric functions, and then calculating the latter from their expansions
in series. It is shown in appendix 4 that we may write

i/1+1)
1/1 1/1111/1_,” (7§ oy 1/1311/1
r
2F 4i/1k) Fl:i/l 1114

- = _y__ I T i . p—2r
+e (Kk’2 1 rk'2 r+2’2’ r,+1’e :I

)
111 [1/1 ; ;’1/1 _2r]__ ir/1 2 o F[1A+3 ;,1/\ —l—2;e‘2”:|
()
il 11, 1/1 —21'] |

+e—r(Kk;2 1+ kiz)F[ 2 2)

where F(a, b; c; u) is the hypergeometric function. The formula (128) is in agreement with
the expression obtained by Timman (1951).

The first-order correction terms for the air-load coefficients are now obtained by sub-
tracting from the real and imaginary parts of the numbers in equation (125) their counter-
parts in (127).

T(A,7) = (128)

14. CoMPARISON WITH TIMMAN’S RESULTS
It is of interest to compare the formulae of equation (127) with corresponding results of
Timman (1951) and Lilley (1952). For the dimensionless number /;,, Timman obtains

1__.T7,2q‘l‘ © m 1 4 g2m+1 © 1 4 g2m+1
2 K%, z 1— q2m+l) 2 7" (_—gznw—l)‘é

16;129 z q2n 1_]_q2n+l
,”2a2 n=02”+1 (1_q2n+1)3’

3
mna

e

where g=e~"%/X, With the aid of equations (106) and (126), together with the expansion
— Jok?[1+ 32+ O (k%] |
(Byrd & Friedman 1954, p. 299), this reduces to
I, =AI(T)+2+55k2A[F#(T)—12] + O(k*),
and ly=—A[1+2(T)] +55,2A[2— %(T)]—I—O(k“),

which differ from the results of equation (127). It may similarly be shown that the other
air-load coefficients due to Timman are at variance with those of (127). The formulae of
Lilley (1952) are identical with those of Timman, except that the former has used the func-
tion C(A,7), defined by C=%(1+T), in place of T(A,7).

34 VoL. 250. A.
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The methods of Timman and Lilley depend on operations involving Fourier series. The
validity of some of these operations seems doubtful, and it is probable that this accounts
for the discrepancies. For example, Timman obtains the ‘formal’ expansion

l1—cnydny ~_~ 1+g¢7
sy —Z(y) 2( ) qsmmﬁ

After multiplying this by the series .
2n 2 ¢""rsin (2n+1) ¢
sny :—K—k”goq 1__(q2n+1 ) ’

and integrating, Timman finds that

1+ q2m+l
[ Lony dnysnyzinldy — 2k -3 3 et TG
which result is used in the derivation of all his formulae for the a1r-load coeflicients. It is
shown in appendix 2 of the present paper, however, that the above integral is equal to zero.
This would indicate that the operatlons carried out on the formal series of the above type
are not justified.

The author wishes to acknowledge the many valuable suggestions and the encourage-
ment given by Dr L. G. Woods, formerly of the Department of Applied Mathematics,
University of Sydney, and now Nuffield Research Professor of Mechanical Engineering,
New South Wales University of Technology, under whose supervision and at whose sugges-

tion this work was carried out.
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APPENDIX 1. FORMS OF THE FUNCTION f{{)

The solution (7) of Laplace’s equation derived by Woods (1955 a) can be transformed
into an alternative form by using the properties of the theta functions given in Whittaker &
Watson (1946, chap. 21).

From Landen’s transformation we have

H(u| 7)) dy(u| 7)) = const. x #(2u|7),
where 7 = 27, = iK'/K. Taking logarithms and differentiating,
Sl )+l m) = 25t (2u]7) = 2425 (@t o |

— 2i+203(0| 7) Z[$3(0 | 7) (2u-+1a7)], (129)
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from the definition of the zeta function. An equation involving theta functions is
4 $1(y) H(2) h(y+2)
% 2 1 1 1
+5(Z)—5y+z 0) 94(0 .
5 ) +51 (D)~ 2 = 94(0) 950) gL IS
If we put y = u+—2—m, z = %m, and use the periodic properties of the theta functions, this
becomes ( ( | p )
1

¥ Pq(u
( |71)— 19( | 71) = 95(0 ITI)?%(” 71) dp(u | 1y)

35(0 | 7)
2 3 2
=95(0|7)) 3,(0]7) ns [93(0 | 7) 2u], (130)
from Landen’s transformation and the definition of the elliptic function. It is found that
2K T
ol =2, a01n) Pl -2

further, the periodic properties of the zeta function give that

Z(u+7K) = Z(u+iK') = Z(w) + LI _ 17

snu 2K’
Substituting these results into (129) and (130), we obtain

N S i

( I71)~—~ ( = )+ 4Ku (181)
sn——
4Kud 4Ku 1
Sy 2K ek o

and 3, (u]| 1) = Z( - )—!— sn4_K_u (1382)

Replacement of the theta functions of equation (7) from (131) and (132) leads immediately
to the required alternative form (8).

A further alternative form may be obtained by using properties of elliptic and zeta
functions (Whittaker & Watson 1946, chap. 22). With the aid of these properties it can be
shown that

1+cn(oc—e¢)dn(c—e

cn}(o—e) dnf(o—e)
sn (o—e) .

) 4 Z(o—0) = 2Z4(0—e) + sni(c—e)

Now let

p=cn Y(c—¢)dnf(sc—e) cni(o+e) dni(o+te)

sni(oc—e) sn{(oc+e)
Then substituting new variables

u=*%(o+e), v=4(0—e),

+2{Z%(0c—¢)—Z%(o+¢)}.

we find, after rearranging, that

nvdnv—snv dnu |
snu cny dn cnu —2(Z () — Z(0)}.

D=
snusnv
Furth 0 (u— )_snucnvdnv—snvcnudnu
urther, sn (u—v) = I et snts ,
and : Z(u)—2Z(v) = Z(u—v)—k?snu snv sn (u—v).

34-2
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Hence we obtain D =sn (u—v) +k%snusn v:|—2Z(u——v).

snuysnv

Results quoted by Byrd & Friedman (1954, p. 23) yield
1  dn(u—v)+dn(z+v)
snusnv cn(u—v)—cn (u+v)’

dn (z—v) —dn (u+v)

2 —_
and k?snusnov = en (u—v) Ten (u+v) "
Therefore
_ dn (u—v) +dn (u+v) dn(z—v)—dn (u42)] B
D =sn (u“’v) [cn (u—v)—cn (u+v) ' cn(u—v)+cn (u+ov) 2Z(u—v)
_ g sneCRE dne+cno dn0_2Z(€)’ (133)

sn?g—sn?e
on resubstituting the original variables and rearranging. Similarly it may be shown that

cni(oc—e) dni(oc—e)  cni(o+e¢) dni(o+e)
sni(oc—e) sn(o+e)

= 2sno

+2{Z5(0—¢) +Z(0+6)}

cne¢dnet+cnodno
sn?g—snZe

+2Z(s). (134)
Hence by addition of (133) and (134),

cnd(oc—e) dni(oc—e)
sni(c—e)

1+cn(o—e¢) dn(c—
sn (0—e¢)

+2Z%(g—e¢) = €)+Z(a—e)

__cnedne+cnodno
Sno—sne

—Z(e)+Z(s). (135)

Using (1385) in the first integral of equation (8), and (133) in the second integral, we obtain
the desired form (15). ' .

APPENDIX 2. EVALUATION OF INTEGRALS INVOLVING ELLIPTIC AND ZETA FUNCTIONS

In the expressions for the circulation (§4) the integrals

2 -
_2Kns ksny* sny—1

2K keny* dny* sn2y—cny dn
Ixzf heny* dny*sn’y—cnydny,

ns? Ten2 in* sn2
—9K k?sn?ip* sn?2y—1

2K kcnip® dnin* sn2y4-cny dn
Izzf y U U 14 Y Td%

have to be calculated. Consider

2k kcny* dny* sn?y—cny dny
J— 2
g —f_ans ¥ k2sn?y* snZy—1 dy-

fi’K ns?y cny dnydy 9 2kns?y cny dnydy

N -
ow —oxk?sn?y* sn2y—1 o K?sn?y* sn2y—1

since the integrand is an even function of y. Introduce a new variable , where « = y—K;;
then using periodic properties we find

2 2Kns?y cny dnydy __ZJ‘K k?2snu cdudu

o K%sn?y*sn2y—1 xhk?sn?y* a1


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AERODYNAMIC FORCES ON AN AEROFOIL 275
since the integrand is now an odd function of . Further,
2K d'}/
— * *
keny* dny f_ml—kzsnzy* sn?y
2K sn?ydy
— * * 2402
=—kcny* dny {f_ dy+k%sn?y f o1 —FZsnZy* snzy}

= —4Kk[cny* dny* +sny*Z(y*)],

from the definition of Z(y*) (Byrd & Friedman 1954, p- 33). The result for /, may be
obtained similarly.
The integrals of equation (37) for the lift are obtained as follows:

2K
() [, [i+eny dnyldy = [y+sny)2% - 4K.
2K ok K K
(i1) f snyZ(y)dy = 2j snyZ(y)dy = 2[ cduZ(u) du—2k2f snu cd?uduy,
-2K 0 -K -K
on putting « = y— K, and using the periodic property for Z(x -+ K). Thus
2K
f snyZ(y) dy =0,
-2K

since the integrands are now all odd functions of u. The results (i) and (ii) are useful in § 14.

2K * 2
(iif) J‘ sny cny* dny* dy — cny* dnyj __sn?ydy

—2x Sny*—sny 2xSNZy* —sn2y

= —4K[cny* dny*+sny*Z(y*)],
on applying a formula given by Byrd & Friedman (1954, § 415-02).

. 2K snycny dny ___J‘ZK ff" cny dnydy
(iv) J_zx#sny*—sny dy = o cny dnydy-+sny* sny* —sny

= —[sny]Zg—sny*[In (sny* —sny)]25,
= 0.

The integrals in the moment equation (41) are:

o (3K 1—kcdy . . . .
(1) f In ( -——~—-) dy which vanishes after putting « = y—K as previously.
-2K

1+kcdy
oy [2K 1—kcdy 1—kcdy (K, __8(E—K)
(i) J_ZKcny dnyln(l—l—kcdy) dy = I:snyln(l+kcdy)] —Qkf—zz(sn ydy = ——,

on integrating by parts and using the result (Byrd & Friedman 1954, p. 191)
t 1
2¢dt = [t —E(B)].
[{sntear = g1~ E()]

ooy (2K snycny* dny*. (1—kcd
(i1 f—-zK sny* —sny In (1+kcd

, 2K snycnydny (l—kcdy)
* .
Fir)= J ok SDY¥ —sny In 1+kcdy, d,

7) dy vanishes after putting « = y—K.

(iv) If we write
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then we find that
, 2K sn?y cny dny, (1—kcdy
*)
() -‘f_ZK sn2y* —gsn?y In (1 +kcd7)

R 1—kcdy o % [2X cnydny l—kcdy)
= f_mcny dnyln(———~—~l+k d )dy+sn y f_ngnzy*—snzyln(1+kcdy dy

_ 8(E—K) ny*—sny)
== +ksny* f sny n(s-——ny*+sn7 dy,

on integrating by parts. Consider now

2K sny*msny)
sk —
J _——f_sznyln (smny* sy dy.

Then differentiating with respect to y*,
3J* f’”‘ snZy cny* dn y*
ox  SnZy*—sn?y

dy = —8K[cny* dny*+sny*Z(y*)],

as previously. Thus J* = —8K| sny*+ fy* sny*Z(y*) dy*:l ,
and so, after rearranging, '

i =2 [ dnzy* —15(] —8Kksny* [ Z*sny*Z(y*) dy*.
This result is useful in the expansion of I'(y*).

(v) If we write 1—ked 7)

I= [ snyz(») (12597 4
: :f_ﬂ(sny ) n(H—kcd_y

then from the definition of Z(y) (Byrd & Friedman 1954, p. 230), we find

1 1—kcdy du
I_4Kf 2Ksn y cny dnyln(m)f

sxSnZu—sn?y

"(u) du. 44
~ x| @ (44)
APPENDIX 3. AN EXPRESSION FOR THE PRESSURE DISTRIBUTION

On rearranging terms we can write equation (30) for the velocity distribution on the
aerofoil surface

Q) = o [ peoRrm dnyEEeny dny g L R sntipt(ony dny Zonig” dnig®) g,
277 -2K Sn7 ny 0 Sny(sn in* —sn ,},)

_cnydny (K %
2mwsny OXd” Jr27Tsn

f chu]* dnig*dy*. (136)

Replacing the last two integrals of this from equations (9) and (17) respectively, and
simplifying, we find for (136)
2K * * * 7 (%
) =_1_f g% {sny (cny* dny*+cny dny) sny Z(y )}dy*
2K sny(sny* —sny) sny
K’ 2ip* —cnin® dnin* in* 7 (in*
+_1_f X{in ig*(cny d?.y* cnlz dnip*) snip*Z(ip )} dy*
0 sny(sn?ip* —sn?y) sny

2m
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From this we have k

sn 02 1 9*{sn7*(cny* dny*+cny dny)
Yot “on)_ sny* —snvy

JK X {sn%r;*(cny dny—cnip* dnip*)
onl)o at sn?ip* —sn?y

Fsny*Z(y*)| dy*

“sn i;;*Z(ir;*)} dp*. (137)

The differential equation (23) enables the latter integral of (137 ) to be expressed as

U x (?X snig*(cny dny—cnig* dnig*) « *
I=— 4hk 31] { snZig* —sn?y —Z(in )} dy

_ U %, snig*(cny dny—cnn]* dnizg*) % %
—4hkf0’Xaf; { =26 dr,

sn2ig* —sn?y

after integration by parts—the integrated term vanishing. Straightforward differentiation
now shows that

i_@{sniﬂ(cny dny—cnip dnip)

iisn y(cny dny—cniy dniy)
an sn?ip—sn?y

_Z(i”)} Y sn?ip—sn?y —Z(y)} )

Therefore (137) may be written

2 1 fﬂ‘ % {sn y*(cny* dny*+cny dny)

* *’ &
SNVt T o sny* —sny +sny*Z(y )}dy

U (¥ d (sny(cny dny—cnig* dnigp*) )
—z ), X3 . —Z(y)| dn*;

sn?ip* —sn?y
and so

2K *(cny* *
thpUJ‘ d hkszf s J‘V{sn)’ (cny d:)’ +cny dny)—i—sny*Z( )}dyd‘y
T —92K 0 sny* —sny

__p__U2JK' :sny(cny dny—cnig* dnig*) } %
o X sn?in* —sn2y Z(y) dn*. (138)
By combining this equation with the term pU2%2 from (80), the pressure equation (31)
can now be written down.

Introduction of the function G(y*), deﬁned in equation (32), allows the second integral
of (31) to be expressed as

% cny*dny —|—cnydny *; %
=G [ |7 amCom (BT R Zom L dyray,

which becomes, on integrating by parts,

_pU 7[- % {cny* dny —l—cnydny % }]
_27Tf0 G(y Sl’l‘}’ ny +Z( ) Kd’y

__,o_fj Clv* {cny*dny*—l—cnydny 7 *}d *d
or o) on (7)37 syt —sny T 20)pdrEdy.

From equations (10) and (32) it follows that
G(2K)—G(—2K) = 0,
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and so the integrated term of 7 vanishes. Further it can be shown that

d [cny* dny*—l—cny dny % i} {cny* dny*+4cny dny }
ay* { sny* —sny +2ly )} oy sny*—sny —Zny-

Thus we may write

,on % [cny* dny*+4cnydny ] %
I= 2 7) sny* —sny Z(y) |dr*.

Substituting this back into (31), we finally obtain the equation (33).

APPENDIX 4. TRANSFORMATION OF THE FUNCTION 1/(A, 7)
From equation (83) and the definition of 2(coshr), it is found that 7(A, r) may be written

2F 4iAk
NQuoy—(N+1) Qo+ (a1~ ) @

2F 4idk
NQy ,—(N+1) QN+1+(Kk'2 1+ kfz) QN

Whittaker & Watson (1946, p. 317) has the formula

FD(N+1) 1
Qn(2) = 271‘T’+1FEN+%§ ZN+1

T(A,7) =

FAN+330+15 N+ 5,

where Fla,b; c, u] is the hypergeometric function, and I'(«) the gamma function. Using
the transformation formula (Erdelyi 1953, p. 112),

Fla,a+%;c;u] = (1 +ud) "2 F[2a,c—}%; 2c—1; 2ut(1+u¥) 1],

77 I'N+1 s 2
we obtain  Qy(z) = FEN~—§(1+z) N 1F[N+1,N+1;2N+2;ﬁ—z],
where we have put a=3iN+%, ¢=N+3, u =51§.

Further, Erdelyi has the result (p. 113)

—(1—u)hH?
Flosai 205 = [h+i0 -0 Fla b o[ TH 9]

Thus on putting 4 = —1—_?_—2- , a = N+41, we obtain

Q) = grrr g (142

G = I EERR v e e

Writing z = cosh 7, we find this to be

I'(N+1) e—(N+1y
I'N+3)

Apphcatlon of this formula, with N taking consecutive values N =il/r—%, N =ilfr—3$,
= iA/r+%, immediately yields the form (128).

Qy(coshr) = 7t F[N+1,}; N+3; e ?].
N
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